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Starting point: a discrete model.

Goal: derive and justify the corresponding continuum model –

readily amenable for mathematical analysis (Unlike in part I).

Classical work: M. Born, K. Huang. “Dynamical theory of crystal

solids, 1954.” A formal derivation of continuum linear elasticity

from a periodic mass-spring model with central, pair-wise

interaction.

Key ingredient: Cauchy-Born (CB) rule: linear displacement at the

boundary of a monoatomic crystal ⇒ all atoms follow a linear

interpolation of this displacement.

2



Validity of CB rule under various assumptions: Blanc, Le Bris,

Lions, 2002. Hypothesis: macroscopic displacement equals

microscopic one.

Quasi-Continuum approach (QC), W.E, P. Ming, 2004, ...

Failure of CB rule: Examples of 2D mass-spring lattices, special

values of lattice parameters – Le Dret, 1987, Friesecke, Theil, 2002.

Mathematical justification of limits of validity of CB is necessary.

Our work: a non-periodic 3D array of point masses connected by

linear springs.

– a general geometric condition on a non-periodic array of particles

is introduced

– discrete Korn’s inequality, which allows to justify the limit, is

proved for such arrays. Korn’s constant – in terms of lattice

parameters – controls instabilities.
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The discrete problem

Ω ⊂ R
3; N particles with coordinates xε

i , i = 1, . . . , N – large.

ε = N−1/3 – small parameter.

Distances between neighboring particles are O(ε):

c2ε ≤ |xε
i − xε

i | ≤ c1ε, c1, c2 > 0.

Each particle has mass mε
i = Miε

3, and less than k neighbors

connected by elastic springs. Mi > 0 and k do not depend on ε.
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uε
i – the displacement of i-th particle. The displacements are small

in the sense

|uε
i − uε

j | ≤ cε.

This is a crucial assumption; its violation may result in instabilities

even for quadratic springs analogous to Friesecke, Theil on 2D.
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Quadratic springs: elastic energy is

〈

Ci,j
ε

(

u
(ε)
i − u

(ε)
j

)

,
(

u
(ε)
i − u

(ε)
j

)〉

,

where < ·, · > is a dot product in R
3. Central interaction

Ci,j
ε

(

u
(ε)
i − u

(ε)
j

)

= Kij
ε

〈

u
(ε)
i − u

(ε)
j

x
(ε)
i − x

(ε)
j

, eε
ij

〉

,

Kij
ε – a (scalar) spring constant.

Intensity of the elastic interaction Kij
ε = Kijε2,

0 < K1 < Kij < K2, K1, K2 are independent of ε.

Potential energy of the network is

H(uε
1, . . . , u

ε
N ) = H0 +

1

2

∑

i,j

〈

Ci,j
ε

(

u
(ε)
i − u

(ε)
j

)

,
(

u
(ε)
i − u

(ε)
j

)〉

,

H0 – an arbitrary constant.
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Number of terms in the sum

H(uε
1, . . . , u

ε
N ) = H0 +

1

2

∑

i,j

〈

Ci,j
ε

(

u
(ε)
i − u

(ε)
j

)

,
(

u
(ε)
i − u

(ε)
j

)〉

,

is O(ε−3), uε
i ∼ ε, hence, this scaling implies finite energy.

For the unique equilibria clamp “near boundary particles” in

ε–neighborhood of ∂Ω:

x
(ε)
i , i = 1, . . . , M, M = O(ε2).
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Motion of the network is described by the system of 3N equations:

m
(ε)
i

∂2

∂t2
u

(ε)
i = −∇u

(ε)
i H(u

(ε)
1 , . . . , u

(ε)
N ), i = 1, . . . , N.

IC: u
(ε)
i (0) = 0,

∂

∂t
u

(ε)
i = a

(ε)
i , i = 1, . . . , N ;

BC: u
(ε)
i (t) ≡ 0, t > 0, i = 1, . . . , M.

Initial velocities a
(ε)
i , i = 1, . . . , N satisfy

N
∑

i

m
(ε)
i |a(ε)

i | ≤ C (Kinetic energy is bounded).

Goal: derive the continuum limit when the network spacing ε → 0.
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Def: A network is called a triangulized network if it satisfies the

following conditions:

– the points x
(ε)
i partition the domain Ω into simplexes (pyramids)

P α
ε whose edges connect neighboring (interacting) particles and

– angles are uniformly bounded below by c > 0 independent of ε

(pyramids do not degenerate).

Pyramids are not necessarily identical since the particle array is

non-periodic.
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In order to study convergence, introduce the linear spline uε(x)

corresponding to the discrete vector function u
(ε)
i

uε(x) =
N

∑

i=1

u
(ε)
i Li

ε(x),

Li
ε(x

ε
k) = δik, Li

ε is linear.

Key technical point: discrete Korn’s inequality:

(K) ‖uε(x)‖2
H1(Ω) ≤ C̄

∑

i,j

〈

Ci,j(u
(ε)
i − u

(ε)
j ), (u

(ε)
i − u

(ε)
j )

〉

,

C̄ =
4c3

1

3K1c2

; RHS – elastic energy,

c1, c2 – bounds on spacing between neighboring particles,

K1 – lower bound on spring constant.

10



(K) ‖uε(x)‖2
H1(Ω) ≤ C̄

∑

i,j

〈

Ci,j(u
(ε)
i − u

(ε)
j ), (u

(ε)
i − u

(ε)
j )

〉

,

C̄ =
4c3

1

3K1c2

; RHS – elastic energy,

c1, c2 – bounds on spacing between neighboring particles,

K1 – lower bound on spring constant.

(K) is proved for triangulized networks and it implies convergence

of uε(x) to a continuum limit (compactness of uε(x)).

If K1 or c2 become small, C̄ blows up ⇒ instabilities a la Friesecke,

Theil, no continuum limit.
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The continuum limit (linear elasticity), convergence of the splines

u(ε)(x,t) to u(x, t).

ρ(x)utt −
∂

∂xq
[anpqr(x)εnp[u(x, t)]er] = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = 0, ut(x, t) = a(x), x ∈ Ω, t = 0.

ρ(x), a(x) – limiting mass density and initial velocity distribution.

er, r = 1, 2, 3 – basis in R
3

anpqr(x) are obtained via method of mesocharacteristics from

homogenization (L. B., E. Khruslov).

Homogenization techniques (Γ-developments, HMM,

mesocharacteristics) are useful in atomic to continuum limits.
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Idea of method of Mesocharacteristics:

Mesoscale h: ε ≪ h ≪ diam(Ω).

K
y
h – a cube centered at y ∈ Ω, side length h, cover Ω by such

cubes.

EKy

h
= (discrete elastic energy + penalty term) – quadratic form

for any constant tensor Tnp

EKy

h
= anpqr(y, ε, h)TnpTqr

Penalty term forces discrete function u
(ε)
i restricted to K

y
h to be

“smooth” (close to a linear one) on scale h – “homogenization” on

the mesoscale.
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Effective elastic constants at a point y ∈ Ω are

anpqr(y) = lim
h→0

lim
ε→0

anpqr(y,ε,h)

h3
.

Example: Cubic lattice, connecting springs are:

NN (edges of unit periodicity cell)

NNN(diagonals of the faces of cube)

NNNN (diagonals of the cube).

annnn = k

(

1 +
√

2 +
4

9

√
3

)

,

annpp = anpnp = k

(

1

2

√
2 +

4

9

√
3

)

.

Coincide with previously known formulas, but now they are

justified and limits of validity are attached.

A wide variety of tools is available for linear elasticity PDE.
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Current (future work) with L. Truskinovsky (Ecole Polytechnic):

• Establishing the limits of validity of the CB rule for lattices

(networks) with geometrical nonlinearities.

• Rigorous mathematical understanding of the continuum and

quasi-continuum limit (QC approximation).

QC limit – a continuum model which still contains several atomistic

length scales (internal variables, non-local kernels, high derivatives)

e.g. Friesecke, James (2000) – continuum limit for thin films with

internal variables.
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Conclusions, Part II

• By contrast with part I, continuum (possibly hybrid) models

may be advantageous in studies of crystalline solids.

Well-developed machinery of PDEs and Calculus of Variations

for continuum problems.

• Recent examples of failure of CB rule underline the need for

rigorous analysis of the atomistic to continuum limit with

emphasis on the limits of validity. In the work L.B., Berezhnoy

a classical problem of derivation of continuum elasticity PDEs

from a generic 3D array of masses/springs was considered in a

rigorous math frameworks of mezocharacteristic approach.

Limits of validity are specified.

• The existing math approaches of homogenization theory

(mesocharacteristic, Γ-development, HMM) are useful in the

derivation of continuum models.
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